Notes on CUDA Programming

Aashay Kulkarni
November, 2025

Contents
L INtroduction ...
1.1. CUDA (Compute Unified Device Architecture)oooiiiiiiiiiiiiiiiiiiiiinnn,
2. History of GPU Computingooiiitiii e
2.1, GPGPU Lt
2.2. GPU Computingooovni i
3. Introduction to CUDAttt ettt ettt e et
3.1. Data Parallelism
3.2. CUDA Program STIUCLUIE ..ot
3.2.1. MATMUL EXampleooooiiiiii e
3.3. Device Memory & Data Transfer i
3.4. Kernel Functions and Threadingoooiiiiiiiiiiiii i
4. CUDA TRICAAS eveettttttt ettt
4.1. CUDA Thread Organizationcooiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii e,

1. Introduction

Multicore CPUs enable you to maximize execution speed of sequential programs, while many-core
GPUs allow greater execution throughput of parallel applications

Today, there is a large performance gap between parallel and sequential execution.
Why?

« design of a CPU is optimized for sequential code performance

« memory bandwidth is another issue. GPUs move data much faster in and out of its DRAM.

« developers move computationally intensive parts of software to GPUs

« video games require massive number of floating point calculations per video frame, being
executed in parallel and GPUs have been used for this purpose.

1.1. CUDA (Compute Unified Device Architecture)

+ programming model created by NVIDIA to support joint CPU/GPU execution of an application.

+ CUDA-capable GPU is organized into an array of highly threaded streaming multiprocessors
(SMs). SMs combine to form a building block. SMs have a number of streaming processors (SPs)
that share control logic and instruction cache.

Host
Input assembler

Thread execution manager

Parallel data Parallel data Parallel data Parallel data Parallel data Parallel data Paralle| data Parallel data
cache cache cache cache cache cache cache cache

[rexture | { [[[Texture | | Q|| rexure | || |]]vexture ||| Q||| rextre [|§]]]Texture| || [|[Texuwre |-[|]|]]rexure]]]

+ To experience speedup offered by parallelization, a large part of the application’s execution time
must be in the parallel portion.
« Certain applications have portions better suited to CPUs and hence a combined CPU/GPU parallel
computing capability is required. This is precisely what CUDA promotes.
+ Key steps in parallel computing:
» identifying parts of application programs to be parallelized
» isolating the data to be used by the parallelizing code by using API functions to allocate memory
on the parallel computing device
» using API functions to transfer data to the parallel computing device
» developing kernel functions that will be executed by individual threads in the parallel part
» launching kernel functions for execution by parallel parts
» transferring data back to the host processor with API function calls

2. History of GPU Computing

2.1. GPGPU
General Purpose Computing on GPUs.

« GPU processor array and frame buffer memory were designed to process graphics data and were
too restrictive for general numerical applications.

« writes were extremely difficult -> could only be emitted as a pixel color value and configure the
frame buffer operation to write.

« the handful of useful applications created with general computations on a GPU -> this field was
called GPGPU.

2.2. GPU Computing
+ NVIDIA developed Tesla GPU Architecture.
» programming paradigm to think of GPU like a processor.
+ programming approach involved explicit declaration of data-parallel aspects of their workload.
+ no longer need to use graphics API to access parallel computing capabilities.

3. Introduction to CUDA

3.1. Data Parallelism
« computing system consists of host (CPU) & devices (massively parallel processors)
« CUDA devices accelerate execution of applications by harvesting a large amount of data
parallelism.
» Matrix multiplication P = M x N:
» as every entry p,; is independent of each other, a large amount of data parallelism can be
performed.

3.2. CUDA Program Structure

« CUDA program comprises phases that are executed either by the host (CPU) or a device such as a
GPU.
« CUDA program is a unified source code comprising both host & device code.
» NVIDIA C compiler (nvec): host code = ANSI C; device code = ANSI C extended with keywords
for data-parallel functions, called kernels.
» kernel functions generate a large number of threads to exploit data parallelism.
» when no device is available, one can execute the kernel on a CPU using the CUDA SDK or
MCUDA tool.
« CUDA threads are faster to generate and schedule than CPU threads due to efficient hardware
support.

CPU serial code ;
Grid O

e B G oo || S| | R | A
Kemelb<<< nBIK, nTid ==={args); e
CPU sarial code
GPU parallel kermnel w m
Kemelb<<< nBIK, nTid ==={args);

« CUDA program:

» starts with CPU execution; when a kernel function is invoked, execution is moved to the device.

» large numbers of threads are generated to take advantage of data parallelism, collectively called
grids.

» when all threads finish execution, the corresponding grid is terminated and execution moves
back to the host.

3.2.1. MATMUL Example

int main (void) {
// 1. Allocate and initialize matrices M, N, P
// I/0 to read input matrices M and N

// 2. M * N on the device
// MatrixMultiplication(M, N, P, Width);

// 3. I/0 to write output matrix P
// Free matrices M, N, P

return 0;

}
3.3. Device Memory & Data Transfer

+ Device code can: (Device) Grid

= R par-thread ragisters

= R/MW per-thread local memory

= R pear-block shared meamorny

Block {0, 0) Block (1, 0)
= RW per-grid global memary ! ’ ’
- Read only par-grid constant

memory Throad (0, 0) Thread (1,0) | Thread (0,0} Theead (1, 0)

B

* Host code can

= Transfer data to/from per-grid Host
global and constant memaornies

« CUDA runtime system provides API functions to perform memory allocation and data transfer
between host and devices.

« CUDA devices comprise global memory and constant memory; these are accessible from host
code.

«+ Constant memory is read-only for device code.
« API functions cudaMalloc() and cudaFree() allocate and free global memory.

« API function cudaMemcpy() transfers data between host & device memory.

Grid

+ cudaMalloc()
= Allocates object in the device

glohal mamony
= Twao pararmatars

+ Address of a pointerg the
allecated objact

+ Size of of allocated object in
tarms of bylas

Block (0, 0) Block (1, 0)

o g

Thread {8, & | Thread (1, 8) Thmu(ﬂ.ﬂ-ﬁ‘ Thiread (1, 0}

» cudaFrea()

= Freas chject from device
global memary

+ Pointer to freed object

For cudaMalloc():
First parameter is a generic pointer (void), Second parameter is the size in bytes

Example:

float *Md;
int size = Width * Width * sizeof(float);
cudaMalloc((void**)&Md, size);

// ...
cudaFree(Md) ;

For cudaMemcpy():

First argument is a destination pointer, Second is a source pointer, Third is number of bytes and
Fourth is direction (host—device, device—host, device—device)

Note: cudaMemcpy() cannot be used for memory transfer in multi-GPU systems.

{Davice) Grid
+ cudaMemcpyi)

- Memaory data transfer Block (D, 0) Bliack (1, O)
= Requires four parameters
+ Pointer to destination
+ Pointer to source
* Mumber of bytes copied ’ ’ ’

+ Type of transfer

Thraad {0, O)| | Thread (1, @) | | Thread (@, Q) | Thread (1, 3)

11Tt 11

= Host to Host

- Host to Device
= Device to Host
- Dwavice to Device

- Transfer is asynchronous

Example:

cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);
cudaMemcpy (P, Pd, size, cudaMemcpyDeviceToHost);

In the MatMul example, the main() function calls MatrixMultiplication(). MatrixMultiplication()
allocates device memory, performs data transfers, and invokes the kernel that computes the result.
This type of host-side function is called a stub function.

void MatrixMultiplication(float *M, float *N, float *P, int Width) {
int size = Width * Width * sizeof(float);
float *Md, Nd, Pd;

// Allocate device memory for M, N, P
cudaMalloc((void**)&Md, size);

cudaMemcpy (Md, M, size, cudaMemcpyHostToDevice);
cudaMalloc((void**)&Nd, size);

cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice);
cudaMalloc((void**)&Pd, size);

// Kernel invocation (not shown)
// ...

// Copy P & free device memory
cudaMemcpy (P, Pd, size, cudaMemcpyDeviceToHost);

cudaFree(Md); cudaFree(Nd); cudaFree(Pd);
}

3.4. Kernel Functions and Threading
In CUDA, a kernel function is executed by many threads in parallel. CUDA programming follows the
single program, multiple data (SPMD) model.

Executed Only callable

on the: from the:
—device__floal DeviceFunc() device device
—global__ void KernelFunc() device oSt
__host__ Tloat HostFumcl) host oSt

Device functions cannot include recursion or indirect calls.

A function can be annotated for both host & device, generating two versions.
Variables like threadldx.x and threadldx.y give thread coordinates.

Thread notation: thread iy eadidx.a, threadidx.y}

Threads are organized hierarchically:

A grid contains one or more blocks

Each block has a unique 2D coordinate

« A thread block is a batch Hoel Davice
of threads that can Girid1

cooperate with each —
ather by: .'I"'E # Block || Block
42, 0 0, m

— Synchronizing their
execution
+ For hazard-free shared
MEMOory accesses

— Efficiently sharing data
through a low-latency
shared memory

#* Two threads from two
different blocks cannot

cooparate

A block is a 3D array of threads (max 512 threads): indexed by threadldx.x, .y, .z
When launching a kernel, host code chooses grid & block size.
Example:

// Setup execution configuration
dim3 dimBlock(Width, Width);
dim3 dimGrid(1, 1);

// Launch device computation threads!
¢ MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width);

4. CUDA Threads

4.1. CUDA Thread Organization

	1. Introduction
	1.1. CUDA (Compute Unified Device Architecture)

	2. History of GPU Computing
	2.1. GPGPU
	2.2. GPU Computing

	3. Introduction to CUDA
	3.1. Data Parallelism
	3.2. CUDA Program Structure
	3.2.1. MATMUL Example

	3.3. Device Memory & Data Transfer
	3.4. Kernel Functions and Threading

	4. CUDA Threads
	4.1. CUDA Thread Organization

