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1. Introduction

Multicore CPUs enable you to maximize execution speed of sequential programs, while many-core
GPUs allow greater execution throughput of parallel applications

Today, there is a large performance gap between parallel and sequential execution.
Why?

« design of a CPU is optimized for sequential code performance

« memory bandwidth is another issue. GPUs move data much faster in and out of its DRAM.

« developers move computationally intensive parts of software to GPUs

« video games require massive number of floating point calculations per video frame, being
executed in parallel and GPUs have been used for this purpose.

1.1. CUDA (Compute Unified Device Architecture)

+ programming model created by NVIDIA to support joint CPU/GPU execution of an application.

+ CUDA-capable GPU is organized into an array of highly threaded streaming multiprocessors
(SMs). SMs combine to form a building block. SMs have a number of streaming processors (SPs)
that share control logic and instruction cache.
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+ To experience speedup offered by parallelization, a large part of the application’s execution time
must be in the parallel portion.
« Certain applications have portions better suited to CPUs and hence a combined CPU/GPU parallel
computing capability is required. This is precisely what CUDA promotes.
+ Key steps in parallel computing:
» identifying parts of application programs to be parallelized
» isolating the data to be used by the parallelizing code by using API functions to allocate memory
on the parallel computing device
» using API functions to transfer data to the parallel computing device
» developing kernel functions that will be executed by individual threads in the parallel part
» launching kernel functions for execution by parallel parts
» transferring data back to the host processor with API function calls



2. History of GPU Computing

2.1. GPGPU
General Purpose Computing on GPUs.

« GPU processor array and frame buffer memory were designed to process graphics data and were
too restrictive for general numerical applications.

« writes were extremely difficult -> could only be emitted as a pixel color value and configure the
frame buffer operation to write.

« the handful of useful applications created with general computations on a GPU -> this field was
called GPGPU.

2.2. GPU Computing
+ NVIDIA developed Tesla GPU Architecture.
» programming paradigm to think of GPU like a processor.
+ programming approach involved explicit declaration of data-parallel aspects of their workload.
+ no longer need to use graphics API to access parallel computing capabilities.



3. Introduction to CUDA

3.1. Data Parallelism
« computing system consists of host (CPU) & devices (massively parallel processors)
« CUDA devices accelerate execution of applications by harvesting a large amount of data
parallelism.
» Matrix multiplication P = M x N:
» as every entry p,; is independent of each other, a large amount of data parallelism can be
performed.

3.2. CUDA Program Structure

« CUDA program comprises phases that are executed either by the host (CPU) or a device such as a
GPU.
« CUDA program is a unified source code comprising both host & device code.
» NVIDIA C compiler (nvec): host code = ANSI C; device code = ANSI C extended with keywords
for data-parallel functions, called kernels.
» kernel functions generate a large number of threads to exploit data parallelism.
» when no device is available, one can execute the kernel on a CPU using the CUDA SDK or
MCUDA tool.
« CUDA threads are faster to generate and schedule than CPU threads due to efficient hardware
support.
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« CUDA program:

» starts with CPU execution; when a kernel function is invoked, execution is moved to the device.

» large numbers of threads are generated to take advantage of data parallelism, collectively called
grids.

» when all threads finish execution, the corresponding grid is terminated and execution moves
back to the host.

3.2.1. MATMUL Example

int main (void) {
// 1. Allocate and initialize matrices M, N, P
// I/0 to read input matrices M and N

// 2. M * N on the device
// MatrixMultiplication(M, N, P, Width);



// 3. I/0 to write output matrix P
// Free matrices M, N, P

return 0;

}
3.3. Device Memory & Data Transfer
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« CUDA runtime system provides API functions to perform memory allocation and data transfer
between host and devices.

« CUDA devices comprise global memory and constant memory; these are accessible from host
code.

«+ Constant memory is read-only for device code.
« API functions cudaMalloc() and cudaFree() allocate and free global memory.

« API function cudaMemcpy() transfers data between host & device memory.
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For cudaMalloc():
First parameter is a generic pointer (void ), Second parameter is the size in bytes

Example:



float *Md;
int size = Width * Width * sizeof(float);
cudaMalloc((void**)&Md, size);

// ...
cudaFree(Md) ;

For cudaMemcpy():

First argument is a destination pointer, Second is a source pointer, Third is number of bytes and
Fourth is direction (host—device, device—host, device—device)

Note: cudaMemcpy() cannot be used for memory transfer in multi-GPU systems.
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- Transfer is asynchronous

Example:

cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);
cudaMemcpy (P, Pd, size, cudaMemcpyDeviceToHost);

In the MatMul example, the main() function calls MatrixMultiplication(). MatrixMultiplication()
allocates device memory, performs data transfers, and invokes the kernel that computes the result.
This type of host-side function is called a stub function.

void MatrixMultiplication(float *M, float *N, float *P, int Width) {
int size = Width * Width * sizeof(float);
float *Md, Nd, Pd;

// Allocate device memory for M, N, P
cudaMalloc((void**)&Md, size);

cudaMemcpy (Md, M, size, cudaMemcpyHostToDevice);
cudaMalloc((void**)&Nd, size);

cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice);
cudaMalloc((void**)&Pd, size);

// Kernel invocation (not shown)
// ...

// Copy P & free device memory
cudaMemcpy (P, Pd, size, cudaMemcpyDeviceToHost);



cudaFree(Md); cudaFree(Nd); cudaFree(Pd);
}

3.4. Kernel Functions and Threading
In CUDA, a kernel function is executed by many threads in parallel. CUDA programming follows the
single program, multiple data (SPMD) model.

Executed Only callable
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Device functions cannot include recursion or indirect calls.

A function can be annotated for both host & device, generating two versions.
Variables like threadldx.x and threadldx.y give thread coordinates.

Thread notation: thread iy eadidx.a, threadidx.y}

Threads are organized hierarchically:

A grid contains one or more blocks

Each block has a unique 2D coordinate
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A block is a 3D array of threads (max 512 threads): indexed by threadldx.x, .y, .z
When launching a kernel, host code chooses grid & block size.
Example:

// Setup execution configuration
dim3 dimBlock(Width, Width);
dim3 dimGrid(1, 1);



// Launch device computation threads!
¢ MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width);



4. CUDA Threads

4.1. CUDA Thread Organization
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